ERGO 2.0 provides fully featured Gene Expression Analytics for RNA-Seq, microarray, and other expression studies.
Visualize your differential gene expression data on ERGO 2.0's publication ready interactive KEGG pathway maps and gain insight into your experimental results.
ERGO 2.0 presents differential gene expression analysis within a genome's metabolic context. Quickly discover which subsystems are over and under expressed. Choose contrasts, draw graphs and export with ease.
Pinpoint and select significantly over or under expressed genes using ERGO 2.0's interactive Volcano Plot. Painlessly export graphs of expression profiles for presentation and publication.
Data clustering allows the identification of expression patterns. Choose from a variety of correlation methods for clustering and deepen your understanding by narrowing your selection and viewing subplots.
Verify consistency among biological and technical replicates by examining visualizations generated from your data. ERGO 2.0 allows simple removal of inconsistent values from analysis and easy re-computation of clustering, PCA, or differential gene expression.
Features that ERGO 2.0 provides for RNA-Seq and expression analytics
Analyze any genome - ERGO can import your non-model organism genome.
Quality analytics of sequence reads
RNA-Seq alignment using academically proven software (Bowtie 2, TopHat, and more)
RNA-Seq read summarization (featureCounts, Cufflinks, HTSeq, Sailfish)
RNA-Seq sample quality analytics
Data normalization using R with published techniques (limma, voom, DESeq2)
Customized hierarchical cluster diagram
Customized differential gene expression analysis integrated with our huge pathway database, KEGG, Gene Ontology (GO), and BioCyc.
Gene Set Enrichment Analysis (GSEA) for ERGO Pathway Database, KEGG Pathways, BioCyc, and Gene Ontology
Customized Principal Components Analysis (PCA) plots
Customizable KEGG and BioCyc Pathway Maps
Create custom filters and cutoffs
Integrate custom data fields
Collaboration Tools and Results sharing