Identification of open reading frames unique to a select agent: Ralstonia solanacearum race 3 biovar 2.

Gabriel DW, Allen C, Schell M, Denny TP, Greenberg JT, Duan YP, Flores-Cruz Z, Huang Q, Clifford JM, Presting G, González ET, Reddy J, Elphinstone J, Swanson J, Yao J, Mulholland V, Liu L, Farmerie W, Patnaikuni M, Balogh B, Norman D, Alvarez A, Castillo JA, Jones J, Saddler G, Walunas T, Zhukov A, Mikhailova N.

An 8x draft genome was obtained and annotated for Ralstonia solanacearum race 3 biovar 2 (R3B2) strain UW551, a United States Department of Agriculture Select Agent isolated from geranium. The draft UW551 genome consisted of 80,169 reads resulting in 582 contigs containing 5,925,491 base pairs, with an average 64.5% GC content. Annotation revealed a predicted 4,454 protein coding open reading frames (ORFs), 43 tRNAs, and 5 rRNAs; 2,793 (or 62%) of the ORFs had a functional assignment. The UW551 genome was compared with the published genome of R. solanacearum race 1 biovar 3 tropical tomato strain GMI1000. The two phylogenetically distinct strains were at least 71% syntenic in gene organization. Most genes encoding known pathogenicity determinants, including predicted type III secreted effectors, appeared to be common to both strains. A total of 402 unique UW551 ORFs were identified, none of which had a best hit or >45% amino acid sequence identity with any R. solanacearum predicted protein; 16 had strong (E < 10(-13)) best hits to ORFs found in other bacterial plant pathogens. Many of the 402 unique genes were clustered, including 5 found in the hrp region and 38 contiguous, potential prophage genes. Conservation of some UW551 unique genes among R3B2 strains was examined by polymerase chain reaction among a group of 58 strains from different races and biovars, resulting in the identification of genes that may be potentially useful for diagnostic detection and identification of R3B2 strains. One 22-kb region that appears to be present in GMI1000 as a result of horizontal gene transfer is absent from UW551 and encodes enzymes that likely are essential for utilization of the three sugar alcohols that distinguish biovars 3 and 4 from biovars 1 and 2.

Mol Plant Microbe Interact. 2006 Jan;19(1):69-79.
http://dx.doi.org/10.1094/MPMI-19-0069